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Abstract

The convergence and regularization mechanism of the conjugate gradient algorithm applied to inverse heat
conduction problems are studied within the context of a Fourier analysis, for a square enclosure subjected to an

unknown time-varying heat ¯ux on one side, and to known boundary conditions on the remaining sides. Analytic
solutions are derived for the Fourier components of the unknown ¯ux over a given time interval. The convergence
rate of the algorithm is thereby shown to depend essentially on the time frequency of the data. Numerical solutions
are also presented to describe in details the convergence process and solution regularization power of the conjugate

gradient method, when the unknown heat ¯ux contains many frequency components and the measurement data are
noisy. It is found that an unknown time-dependent heat ¯ux may be satisfactorily recovered using a single sensor
even when the temperature ®eld becomes two-dimensional, and that the sensor should be placed in a symmetric

manner for better results. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Inverse heat conduction problems are frequently

encountered in many situations where the direct

measurement of boundary conditions or the determi-

nation of thermophysical properties of solid bodies are

impracticable. For example, while the heat ¯ux at the

outer surface of a re-entry vehicle cannot be measured

directly, it may be estimated from temperature

measurements underneath this surface by solving an

inverse conduction problem (IHCP).

The ®rst attempt to solve an inverse problem was

made by Stefan who obtained an in®nite series solution

in 1890. Although the formulation and solution of this

problem were presented over a century ago, it has

grown rapidly as a research subject only during the

last two decades or so. An excellent review of literature

and comprehensive bibliography on the topic may be

found in the books of Beck et al. [1] and Alifanov [2].

The main di�culty with inverse problems is due to

their ill-posed character, in the sense of Hadamard [3].

That is, they may have no solution, or if a solution

exits, it might not be unique or not continuous with

respect to the given data. Therefore many techniques

were proposed to regularize these problems. For

example, Beck introduced the `future time' method for

IHCP, while Murio developed the `molli®cation tech-

nique' to obtain smooth solutions of various inverse

problems [4]. Tikhonov, Alifanov, and others from the

Russian school proposed to cast the ill-posed inverse

problem into an optimization problem with a regular-

ized objective functional, and/or a self-regularizing al-

gorithm of solution [2]. Along this avenue, it is well

recognized that one of the most stable algorithms is

the iterative conjugate gradient method (CGM).
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Since the CGM has been used to solve a great var-

iety of inverse problems [5,6,7,8], including IHCP, as
well as problems of parameter determination and
shape identi®cation, it is worthwhile to examine, within

the context of a Fourier analysis, how a solution is
constructed via this algorithm.

To this purpose, the CGM will be applied ®rst to a
one-dimensional IHCP. Results will demonstrate the
sequential recovery of the various frequency com-

ponents of the unknown heat ¯ux, which is at the
heart of the regularizing mechanism embedded in the
iteration process. In fact, both mathematical analysis

and numerical computations will show how the low-
frequency structure of an unknown heat ¯ux is recov-

ered after a few iterations, while high-frequency com-
ponents are recovered only at a later stage. The e�ect
of measurement errors will be analyzed next by intro-

ducing random noise in the input data. It will be
shown that satisfactory predictions of the unknown

heat ¯ux may be obtained from noisy data, by stop-
ping the iteration process before the undesirable high
frequency components of the noise are recovered.

A two-dimensional IHCP will ®nally be solved to
recover a uniform time-dependent heat ¯ux. The e�ect

of the sensor's positioning, as well as that of using sev-
eral sensors, will be discussed. It will be shown that
the sensor (or sensors) should be located with as much

symmetry as possible within the cavity and that there
is no need to use more than two sensors.

2. Problem de®nition

Let us consider the inverse conduction problem
sketched in Fig. 1. Our purpose is to determine the
unsteady ¯ux q(t ) applied at x=H over the time inter-

val 0 R t R tf , from temperature measurements Tm,
taken at the sensor's position, for a given ¯ux q( y )
applied at x = 0. It will be assumed throughout the

discussion that the walls at y= 0, H are adiabatic and
that the cavity is initially at temperature T0 when heat-
ing begins. The IHCP may be expressed in a con-

venient non-dimensional form by introducing the
de®nitions

T � � Tÿ T0

DT
, DT � QrefH

k
, �x, y�� � �x, y�

H
,

t� � at
H 2

�1�

where all properties are evaluated at T0. Omitting
superscripts from now on, the temperature ®eld within

the cavity satis®es the unsteady dimensionless heat
equation

@T

@ t
� r2T �2�

The IHCP can also be thought of as an optimization
problem, of a type likely to be solved e�ciently via the

Nomenclature

aij polynomial coe�cient
D complex factor
E object functional

H height
k thermal conductivity
P polynomial

p conjugate search direction
q heat ¯ux
Qref reference ¯ux value

S active boundary
t time
T temperature
x, y coordinates

Greek symbols
a thermal di�usivity or step size
d Dirac delta function

D increment
e small or random number
g coe�cient
s random number

t variable
o frequency

Superscripts

k iteration number
0 sensitivity variable
± adjoint variable
� complex conjugate

Subscripts
m measurement value
0 reference value

f ®nal value

Other symbols
h�v�i inner product
k�k norm
v�v modulus
H gradient
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conjugate gradient algorithm. It may then be stated in
a formal way as:

given a set of temperature measurements Tm(t ) over
the time interval 0 R t R tf , ®nd the boundary heat
¯ux q(t ) on surface S (the right wall) that will mini-

mize the objective functional

E�q� � 1

2
kTÿ Tmk2 � 1

2

�tf
0

�Tÿ Tm�2 dt �3�

It is understood that there may be one or many sen-
sors, as needed, inside the cavity. If several sensors are

used, the functional becomes the sum of individual
contributions like Eq. (3) at each sensor location.
Minimization of Eq. (3) by CGM is achieved by

constructing a sequence of approximations q 0, q 1, . .

q k, and so on, for the unknown heat ¯ux according to
q k + 1=q k+a kp k. Here a k is the step size and p k the
conjugate search direction, which is related to the

gradient of E with respect to the function q, and deter-
mined according to a well-known algorithm [9].
One step of the algorithm, in particular, is rightly

devoted to the computation of the gradient. When
some a priori representation is assumed for the ¯ux,
such as a linear combination of n known functions for
instance, minimization of the objective functional is

done over all possible coe�cients of the combination.
In this case, the parameter space over which minimiz-
ation occurs is n-dimensional, and the gradient of E is

nothing but the usual gradient in Rn. When no a priori
information is available on q(t ), minimization must be
achieved over an in®nite-dimensional function space.

In this case, the gradient of E and the step size a may
be obtained respectively from the solution of the
adjoint and sensitivity problems described below.

2.1. The sensitivity problem

Let us introduce the temperature sensitivity TÄ as the
directional derivative of T at q in the direction Dq, i.e.

~T � lim
e40

T�q� eDq� ÿ T�q�
e

�4�

Based on this de®nition, it is then straightforward to
derive from Eq. (2) that the temperature sensitivity

®eld is a solution of

@ ~T

@ t
� r2 ~T �5�

and must further satisfy the initial condition TÄ=0, the
boundary condition

ÿ@
~T

@x

����
x�1
� Dq�t� �6�

and adiabatic conditions on the remaining walls, where

the ¯uxes are known. It is ®nally noticed that the sen-
sitivity problem, with Dq as the driving force, is linear
just like the direct problem, and governed by the same
equation.

2.2. The adjoint problem

When minimization occurs over an in®nite-dimen-
sional space, the gradient HE is related to the direc-
tional derivative of E by

DDqE�q� � hTÿ Tm j ~T i � hrE j Dqi �7�

where the inner products are de®ned from integrals
[10], just as Eq. (3). It may be shown based on Eqs.
(2), (3), (5), (6) and (7) that the gradient of the objec-

tive functional is equal to the so-called adjoint tem-
perature T at the surface where the unknown ¯ux is
being sought, that is HE=T(S, t ). It is possible to de-
rive for the adjoint temperature [2,3] the equation

@ �T

@ t
� ÿr2 �T �

X
i

�Tÿ Tm�d�~rÿ ~ri � �8�

where the summation is carried out over all sensor

positions ~ri. The adjoint temperature must here vanish
at t=tf , and satisfy adiabatic conditions on all the
boundaries. The adjoint problem has non trivial sol-

utions only as long as the error TÿTm, which appears
as a set of point source terms in Eq. (8), is not zero.
When the sensors are located on a boundary surface,

say, on the left wall, the source terms may be dropped
and Eq. (8) is then solved under the boundary con-
dition

Fig. 1. Geometry and coordinate system.
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@ �T

@x

����
x�0
� Tÿ Tm �9�

It is worth mentioning that, since the adjoint tempera-

ture vanishes at t=tf , the conjugate gradient method
will always give q k(tf )=q 0(tf ), thereby convergence
may be very slow if started with an unrealistic guess at
tf .

To solve the adjoint equation with the `end con-
dition' at the real physical time t=tf , one should ®rst
make the change of variable t=tfÿt. Via this trans-

formation, the adjoint problem becomes an initial
value problem in t with a positive di�usivity coef-
®cient, which brings stability during computations [11].

3. Method of solution

The overall CGM algorithm may be summarized as
follows.

1. Set initial conditions and choose initial guess q 0. Set
iteration counter k = 0.

2. Solve the direct problem with q k to obtainTk.

3. Evaluate the error TkÿTm at the sensors pos-
ition(s).

4. Solve the adjoint problem backward in time to
obtain Tk.

5. Evaluate the gradient HEk=Tk(S, t ).
6. Calculate the search direction p k. If k= 0, p k=
ÿHEk, otherwise, p k=ÿHEk+g kp k-1 with

gk � hrE
k ÿ rE kÿ1 j rE ki
krE kÿ1k2

7. Solve the sensitivity problem with Dq=pk on sur-
face S to obtain TÄ k at the sensors position(s).

8. Calculate the step size

ak � ÿhrE
k j pki
k ~T

kk2

9. Update to q k + 1=q k+a kp k.
10. Set k=k+ 1, go back to step 2, repeat until con-

vergence criterion Ek < e is satis®ed.

A control volume approach based on a power-law
scheme and a ®rst-order implicit formulation was used
to discretize the direct, sensitivity and adjoint

equations. The resulting discrete systems were then
solved by alternating line and column sweeps at each
time step. The integrals involved in the de®nitions of

the parameters a and g were evaluated numerically
using Simpson's method. Unless mentioned otherwise,
all the computations were carried out starting from

q 0=0 as initial guess for the ¯ux, for a simulation
time tf=1, with a time step Dt=Dt=10ÿ2, using a
21 � 21 uniform mesh.

4. Results and discussion

4.1. One-dimensional case

Since an arbitrary ¯ux may be expanded in a

Fourier series over a ®nite time interval (0, tf ), the
IHCP may be analysed without loss of generality for a
single ¯ux component of the form q(t )=eiot. The regu-

larization property of the conjugate method is then
best understood, by careful consideration of the fre-
quency response of the various solution elements

during the ®rst few iterations of the algorithm. This is
easier done by assuming adiabatic conditions on the
left wall, as the whole IHCP solution is then indepen-
dent of the y coordinate.

Using Laplace transforms, the direct problem can be
solved exactly under the above boundary condition.
More details are provided in the Appendix, where it is

also outlined how to deduce sensitivity and adjoint
problem solutions from direct solutions, based on lin-
earity principles and the existence of symmetry

between the equations [10]. The temperature ®eld is
then

T�x, t� � ÿ eio t

D
cosh�

������
io
p

x� ÿ i

o

� 2
X1
n�1

�ÿ1�neÿn
2p2t

n2p2 � io
cos�npx� �10�

where D is a convenient short-hand notation for the
complex quantity

������
io
p

sinh� ������
io
p �. The solution there-

fore involves a phase shift in the harmonic term.
Neglecting the rapidly decaying transient terms, the

temperature measured by a sensor on the left wall at
x = 0 is therefore

Tm�t� � ÿeio t

D
ÿ i

o
�11�

As D increases rapidly with frequency, the contribution
of the harmonic term becomes negligible as soon as

o 1 10 or more. Let us now start the iteration process
to recover q(t ) from the initial guess q 0=0, neglecting
all transient terms from now on. The boundary con-

dition for the computation of the ®rst adjoint tempera-
ture ®eld is then simply T 0ÿTm=ÿTm. By using the
symmetry and linearity properties mentioned earlier,

the adjoint temperature at x = 1 in terms of t is
readily obtainable from Eq. (11). This yields

�T
0�1, t� � eio tf

D

�
ÿ eÿiot

D�
� i

o

�
� i

o
P1�t� �12�

where P1 is a linear polynomial whose coe�cients are
given in Appendix A. Using the explicit notation in
terms of t
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�T
0�1, t� � ÿ eio t

j D j2 �
ieio tf

oD
� i

o
�tÿ tf � 1=6� �13�

it becomes clear that the harmonic term is in phase
with, and proportional to, the unknown ¯ux com-

ponent.
Direct computation [10] shows that all terms on the

right-hand side of Eq.(13) are of the same magnitude
at low frequencies, when o 1 1. For higher frequen-

cies, the last term is much larger than the others.
Consequently, the adjoint temperature becomes nearly
inversely proportional to o in such a way that the ap-

proximation

ok �T
0�1, t�k1kP1�tf ÿ t�k �14�

becomes valid as soon as o 1 10 or more. This is
con®rmed in Fig. 2 as each plot levels out to the
asymptotic value determined by tf on the right-hand
side. The presence of the damped oscillations in the

pro®les is the result of the occurrence of otf in Eq.
(13).
The temperature sensitivity at x = 0 is also found at

once from the direct problem solution, giving

~T
0�0, t� � 1

j D j2Tm�t�

ÿ i

o
eio tf

D
P1�t� � i

o
�a11P2�t�

ÿ P1�tf�P1�t�� �15�

Once again, the last term on the right is the leading
term at moderate frequencies. Taking out the real and

imaginary parts of Eqs. (11), (13) and (15) gives the
®rst iteration solutions for q(t )=cos(ot ) and sin(ot ),
respectively. Considering the common asymptotic
behavior of both TÄ 0 and T 0, the step size a 0 must be
constant as o increases. As a matter of fact, direct

computations show that the value of a 0 remains nearly
constant with frequency for a given tf .
According to the solution algorithm, the new ¯ux

estimate is proportional to the adjoint temperature at
x = 1. In compact form, one gets

q1�t� � ÿa0 �T
0�1, t� � A1eio t � B1t� C1 �16�

The coe�cients in Eq. (16) are given by

A1 � a0

j D j2 B1 � ia11
a0

o

C1 � ÿia
0

o

�
P1�tf � � eio tf

D

� �17�

They are functions not only of o, but also tf , through
the step size a 0. Since the latter is real, the coe�cient
A1 does not generate any phase shift in the harmonic
term, which becomes negligible (as well as part of C1)

as o increases, so that the q 1 pro®le is then virtually a
straight line.
The same steps may now be repeated to compute

q 2(t ). Using linearity once more, Eq. (16) implies that
T 1�0, t� � A1Tm�t� � B1P2�t� � C1P1�t� in the bound-
ary condition T 1ÿTm for the adjoint temperature T 1.

The latter is found by inspection from the boundary
condition, after changing variables t to t and expand-
ing the polynomials P1, P2. This gives

Fig. 2. Norm of adjoint temperature T 0 vs frequency.
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�T
1�1, t� � �1ÿ A1� �T

0�1, t� � F1P3�tf ÿ t�
� F2P2�tf ÿ t� � F3P1�tf ÿ t� �18�

where the coe�cients

F1 � B1a22

F2 � ÿB1�2a22tf � a21� ÿ C1a11

F3 � B1P2�tf� � C1P1�tf� �19�
are all linearly related to the A1, B1, C1 of Eq. (17).
This implies that, leaving aside the lowest frequencies,
T 1 will be inversely proportional to o, just like T 0.

This is con®rmed in Fig. 3, where the norm of the
adjoint temperature is plotted for tf=1 and 2.
For the second iteration, the conjugate direction is

given by p1 � ÿ �T
1 ÿ g1 �T

0
. Rearranging terms in Eq.

(18) therefore yields

p1 � �A1 ÿ 1ÿ g1� �T
0�1, t� � G1t

3 � G2t
2 � G3t� G4

�20�

It can be veri®ed that g 1 is a small quantity and that

the new conjugate direction remains very close to the
adjoint temperature T 1. The coe�cients Gi in Eq. (20)
are de®ned in terms of the previous Fi as

G1 � a33F1

G2 � ÿ�3a33tf � a32�F1 ÿ a22F2

G3 � �3a33t2f � 2a32tf � a31�F1 � �2a22tf � a21�F2 � a11F3

G4 � ÿF1P3�tf � ÿ F2P2�tf � ÿ F3P1�tf � �21�

From Eq. (20), the temperature sensitivity is found by

inspection, once more, as

~T
1�0, t� � �1� g1 ÿ A1� ~T

0�0, t� � G1P4�t�
� G2P3�t� � G3P2�t� � G4P1�t� �22�

The step size a 1 is now a complex quantity. It can be
seen from Fig. 4 that the step size is determined only
by tf at high frequencies, although it is far from being

constant at low frequencies. The new ¯ux estimate
q 2=q 1+a 1p 1 can be expressed from Eqs. (16) and
(20) as

q2�t� �
�
1� a1

a0
�1� g1 ÿ A1�

�
q1�t� � a1�G1t

3

� G2t
2 � G3t� G4� �23�

Figs. 5±7 show for q(t )=ÿsin(ot ) a comparison of the

analytic solutions above with their numerical counter-
parts, including the transients. The computations were
all carried out for a sensor placed on the left bound-

ary, using 41 � 21 meshes.
The agreement is satisfactory overall for the ®rst

update q 1, as displayed in Fig. 5, with a slight dis-

crepancy near t= 0, where the transients of Tm are
present, and also near t=tf , where the transients of
T 0 are also present. It can be noticed that q 1 is far

Fig. 3. Norm of adjoint temperature T 1 vs frequency.
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from being zero at t= 0, as the exact ¯ux does.

Nevertheless, the second iteration predicts a much

more realistic ¯ux pro®le, with a fair sinusoidal shape.

As far as the numerical solution is concerned, the

unknown ¯ux is thus reasonably well recovered after

only two iterations. But the analytic solution is not

as satisfactory for the second update as it was for the

®rst one. The greater discrepancy might well be

caused by the cumulative e�ect of the transients of

Tm, T 0 and TÄ 0, as suggested by Fig. 6, where the

agreement is much better over the longer simulation

time tf=2.

Fig. 7 shows the same quantities as Fig. 6, but for

o=10p. The plot for the ®rst update solution is

practically a straight line on the graph, showing that

the linear term in Eq. (13) is now dominant. The

amplitude is also one order of magnitude smaller

than in Fig. 6, as expected. The second update sol-

Fig. 4. Step size modulus vs frequency.

Fig. 5. Predicted ¯uxes for o=p and tf=1.
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ution behaves on the other hand not as a linear, but

as a cubic polynomial in t, with coe�cients inversely

proportional to o, in good agreement with Eq. (23).

The solution at this early stage is still far from the

exact sinusoidal solution. Convergence is nevertheless

taking place in the process. It only occurs at a much

slower rate. This is not surprising, since the adjoint

temperature is inversely proportional to o at any

given iteration. In fact, the solution pro®le obtained

after 20 iterations, for a sensor located at x= 0, has

only roughly one third of the amplitude of the actual

¯ux. It is feasible to speed up convergence by taking

the sensor closer to the active boundary. Fig. 8

shows indeed that a fairly accurate solution (over

most of the time interval) can be obtained after 20

iterations, using a centered sensor.

On the basis of the above discussion, let us now in-

vestigate what happens when the boundary ¯ux

Fig. 7. Predicted ¯uxes for o=10p and tf=2.

Fig. 6. Predicted ¯uxes for o=p and tf=2.
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involves two di�erent frequency components, by con-

sidering for instance

q�t� � ÿsin�o t� ÿ sin�o=et� �24�

where e is a small number, say e < 0.1. An adjoint
temperature solution T 0 is associated with each com-

ponent, in which the terms involving D in Eq. (13)
may be neglected for the o/e frequency component.
The ®rst update q 1 is obtained by superposition of

the solutions. The result involves both a linear term in

t and an harmonic term in ot, and therefore has
the exact same form as the imaginary part of Eq. (16).
The corresponding B1 and C1 coe�cients are then

given by

B1 � ia11
a0

o
�1� e�

C1 � ÿia
0

o

�
�1� e�P1�tf � � eio tf

D

�
�25�

The values of A1 and a 0 remain essentially what they
would be if the ¯ux involved only the lower frequency
component sin(ot). It is clear from Eq. (25) that the

in¯uence of the higher frequency component on q 1 is
of order e. The same conclusions hold for the second
update as well. It appears therefore that the algorithm

generates for the ®rst few iterations a series of updates
q 1, q 2, . . . , mainly associated with the lower frequency
component of the ¯ux. The various components are

thus recovered from the lowest to the highest frequen-

cies in a sequential manner.

This is con®rmed in Fig. 9, where the solution pro-

®le q 2 for a ¯ux q(t )=ÿsin(pt )ÿsin(10pt ) with a cen-
tered sensor is nearly identical with the corresponding

plot in Fig. 5. The graph reproduces essentially the

low frequency component o=p of the ¯ux. After 30
iterations, the high frequency component is well recov-

ered, and the solution is then accurate.

The regularization property of the algorithm can be
fully appreciated, as a certain level of white noise is

purposely introduced in Tm, in order to simulate the

errors encountered in actual ®eld measurements. In
this case E in Eq. (3) does not converge to zero, but to

a value related to the statistical variance of the noise.

Results obtained from the noisy data Tm(1+0.03s ),
where vsv < 1 is a uniformly distributed random num-

ber, are presented next, for a ¯ux q(t )=ÿsin(pt ). For
a centered sensor, the ¯ux pro®le obtained after 20
iterations depicted in Fig. 10 clearly shows the

presence of higher frequency components in the sol-

ution, which is no longer uniform along y. Slight vari-
ations in the data become critical in this context, and

the coe�cients a and g must be computed with as

much precision as possible. Considering the sequential
convergence process described earlier, it is expected

that there may be an optimal number of iterations

leading to a reasonably accurate prediction of the
unknown ¯ux, before the higher frequency components

of the noise are recovered and start to adversely a�ect
the solution. Experimentation with the number of iter-

ations reveals that a better solution is obtained after

Fig. 8. Solutions for o=10p and centered sensor.
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three or four iterations indeed. This is con®rmed in

Fig. 11, where the graph appears smoother and closer

to the exact solution pro®le. The determination of the

optimal number of iterations is somewhat subjective. It

will involve some a priori knowledge and trial and

error. But experience suggests as a guideline to look at

the ®rst few solutions obtained immediately after the

error residuals begin to level out.

The extent to which random noise will a�ect the sol-

ution is also strongly a matter of the sensor position.

Fig. 10. Heat ¯ux after 20 iterations. Noisy data and centered sensor.

Fig. 9. Solutions for two frequency components and centered sensor.
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Fig. 12. Heat ¯ux after 20 iterations. Noisy data with sensor at x= 0.75.

Fig. 11. Heat ¯ux after three iterations. Noisy data and centered sensor.
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If the sensor is placed near the active boundary, at
x = 0.75 for instance, the sensitivity of the algorithm

to the higher frequency components of Tm is greater.
The consequences are obvious in Fig. 12, where the
solution pro®le appears much more distorted than in

Fig. 10 for a centered sensor, all other quantities being
the same. In fact, a satisfactory solution can not be
achieved after any number of iterations with a single

sensor located at x = 0.75. Using 2 sensors at the
same location, placed symmetrically at y= 0.25 and
y= 0.75, will produce after 20 iterations a pro®le just
as warped as for a single sensor. But the result after

three iterations is strikingly di�erent this time, as
revealed in Fig. 13.

4.2. Two-dimensional case

When a non-uniform boundary condition such as

q� y� � 0, 0:5<y<1

q� y� � cos�py�, 0<y<0:5 �26�
is imposed at the left wall, the temperature ®eld within
the cavity will be two-dimensional and asymmetric.

The unknown ¯ux at the right wall may still be recov-
ered using a single sensor, as long as it remains a func-
tion of time only. For a centered sensor, the converged

solution is virtually undistinguishable from what is

found when q( y )=0 at the left wall. This is so,

because the symmetry of the adjoint solution is solely

determined by the sensor's position within the cavity.

It is not a�ected by the changes in the boundary con-

ditions like Eq. (26).

It has been veri®ed so far that sensitivity increases

as the sensor is placed closer and closer to the active

boundary. However, the positioning along y is also a

signi®cant parameter, as we shall see.

Fig. 14 provides a comparison of the ¯ux pro®les

obtained at t= 0.2, 0.5, after 20 iterations, with sen-

sors located at di�erent vertical positions along the

line x = 0.5, under otherwise identical conditions. The

plots associated with the centered sensor appear nearly

uniform at t= 0.5, but not at t = 0.2, where they

show slight but perceptible variations. The solution

obtained with two sensors placed symmetrically at

y = 0.25 and y= 0.75 is for all practical purposes uni-

form along the y-coordinate, as it should, unlike the

single-sensor solution. For a sensor placed at y= 0.75,

the predicted pro®le is biased. The solution has the

right shape at any given y position, but the amplitude

is greater in the upper part of the cavity, where the

sensor is located. The results obtained with a sensor

located at y = 0.25 are symmetrical. Averaging them

Fig. 13. Heat ¯ux after three iterations. Noisy data with two sensors at x= 0.75.
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would produce a solution close to the exact results

ÿsin(p/5), ÿ1 at t = 0.2 and 0.5, respectively.

5. Concluding remarks

A Fourier analysis of the IHCP solution was carried

out in some details for the unknown heat ¯ux q(t ),
which shows that the convergence speed of the CGM
algorithm slows down as frequency increases.

The algorithm has the ability to predict the various
frequency components of a completely unknown heat
¯ux in sequence, the lower frequencies being recovered

®rst. This sequential convergence process is at the ori-
gin of the regularisation mechanism of the method.
Satisfactory predictions of a time-dependent heat ¯ux
were obtained from either exact or noisy data after an

optimal number of iterations.
A single sensor may be used in both one- and two-

dimensional cases, but using a pair gives additional

stability and better uniformity. In any case, the sen-
sor(s) should be placed in a symmetric way within the
cavity to achieve good results.
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Appendix A

Direct problem

Let F(x,s ) and Q(s ) be the Laplace transforms of
T(x,t ) and q(t ), respectively. In the transformed
domain, the direct problem Eq. (2) reduces to

F 00 ÿ sF � 0; F 0�0� � 0, F 0�1� � ÿQ�s� �A1�

which has the solution

F�x, s� � ÿQ�s� cosh�s1=2x�
s1=2 sinh�s1=2� �A2�

The expression can be transformed back to the time

domain, using the standard inversion technique with
residues. This gives

T�x, t� �
X
Res

F�x, s�est �A3�

Let q(t )=t n, for instance, with the transformation
Q=n!/s n + 1. The computation of T(0,t ) from Eq.

(A3) will thus require the evaluation of the residues of

F�s�est � ÿ n!est

sn�3=2 sinh�s1=2� �A4�

The poles at s=ÿn 2p 2, n= 1, 2, 3 . . . , are of order

one. They are associated with temperature transi-
ents. The pole at s= 0, on the other hand, is of
order n+ 2, as can be seen using the expansion

Fig. 14. Flux pro®les for various sensor con®gurations at x = 0.5, 2D case.
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s 1/2sinh(s 1/2)=s(1+s/3!+s 2/5!+ . . . ) in Eq. (A4). The
residue is computed as

Res � lim
s40

1

�n� 1�!
dn�1

dsn�1
fsn�2F�s�estg � lim

s40

1

n� 1

dn�1

dsn�1

� ÿest

�1� s=3!� . . .�
�

�A5�

where P1(t ), P2(t ), P3(t ), . . . , etc. are polynomials of
degree 1, 2, 3, . . . , and so on. Let us de®ne for n = 1,
2, . . . the polynomial of degree n as

Pn�t� �
Xm�n
m�0

anmt
m �A6�

The coe�cients aij up to the fourth order are

a11 � ÿ1 a10 � 1
6 a22 � ÿ12 a21 � 1

6

a20 � ÿ7
360 a33 � ÿ13 a32 � 1

6 a31 � ÿ7
180

a30 � 31
7560 a44 � ÿ14 a43 � 1

6 a42 � ÿ7
120

a41 � 31
2520 a40 � ÿ127

100,800

�A7�

Adjoint and sensitivity problems

With F(x, s ) and Q(s ) as the transforms of T(x, t )
and TÿTm(t ), respectively, the adjoint problem
becomes

F 00 ÿ sF � 0; F 0�0� � Q�s�, F 0�1� � 0 �A8�
in the s domain, for a sensor placed on the left bound-
ary, with the solution

F�x, s� � ÿQ�s� cosh�s1=2�1ÿ x��
s1=2 sinh�s1=2� �A9�

Specializing the latter at x = 1, it becomes clear that

both T(1, t ) and T(0, t ) are obtained by inverting for-
mally identical expressions. If the same Q(s ) is given
for both, the results are the same also. The adjoint
temperature pro®le at the active boundary can thus be

deduced from previous direct problem solutions, using
symmetry and superposition.

The sensitivity problem is governed by the same
equation and boundary conditions as the direct prob-
lem. Let Q(s ) stand for the transform of p(t ) this time.

It follows from the same argument that TÄ(0, t ) is given
by the inverse of Eq. (A2) evaluated at x = 0.
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